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ABSTRACT
Viral exacerbations continue to represent the major burden in terms of morbidity, mortality and health
care costs associated with asthma. Those at greatest risk for acute asthma are those with more severe
airways disease and poor asthma control. It is this group with established asthma in whom acute
exacerbations triggered by virus infections remain a serious cause of increased morbidity. A range of
novel therapies are emerging to treat asthma and in particular target this group with poor disease
control, and in most cases their efficacy is now being judged by their ability to reduce the frequency of
acute exacerbations. Critical for the development of new treatment approaches is an improved under-
standing of virus-host interaction in the context of the asthmatic airway. This requires research into the
virology of the disease in physiological models in conjunction with detailed phenotypic characterisation
of asthma patients to identify targets amenable to therapeutic intervention.
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1. The ongoing problem of acute asthma
exacerbations

The Global Initiative for Asthma (GINA) defines asthma as a
‘heterogeneous disease usually characterized by chronic air-
way inflammation’. It is further defined by a ‘history of spora-
dic respiratory symptoms that can vary in severity and are
accompanied by variable expiratory airflow limitation’ [1].
Exacerbations represent a deterioration of symptoms and
lung function from stable status requiring increased medica-
tion or an unscheduled hospital visit. The impact of asthma
exacerbations is substantial. They account for ~50% of total
expenditure on asthma care and remain a substantial ongoing
challenge for the clinical management of this disease [2,3]. In
developed nations such as Australia, asthma remains the most
frequent cause of acute admissions to hospital [4].

2. The old guard – β2 agonists and
glucocorticosteroids

Short-acting β2-aderenergic receptor agonists (SABA) reverse
acute bronchoconstriction, remain the mainstay asthma ther-
apy and are used to treat acute exacerbations. β2-agonists
activate β2-adrenoreceptors on airway smooth muscle causing
relaxation and bronchodilation. For control of more severe
disease, inhaled corticosteroids (ICS) are remarkably effective
anti-inflammatory drugs and have remained the frontline ‘pre-
venter’ therapy for asthma since the early 1970s [5]. ICS pre-
vent worsening symptoms by controlling inflammation via
several mechanisms including glucocorticoid receptor (GR)
interaction with negative glucocorticoid response element

(GRE) sites. Transrepression also occurs via GR-steroid binding
pro-inflammatory transcription factors such as AP-1 and NF-κB.
Histone modification is another mechanism by which inflam-
matory gene expression is suppressed [6]. Glucocorticoids also
exhibit systemic side effects and these are often mediated by
GR-steroid complexes binding to GRE sites leading to gene
transactivation [6].

The effectiveness of ICS-based preventer medications in
asthma is not universal and for patients with moderate and
severe persistent asthma alternative approaches to treatment
are necessary. Rather than increasing the dose of ICS, these
patients can be prescribed combination therapy consisting of
ICS with a long-acting β2-adrenergic receptor agonist (LABA).
This can be administered via a single inhaler which is a pre-
paration that contains ICS and LABA. Combination therapy
offers advantages over ICS-only inhaler treatment as they
can be used as both a reliever and a preventer. This leads to
better symptom control, reduced risk of exacerbation with
lower doses of ICS [7,8]. The mechanism of action of combina-
tion therapy has been investigated. LABA has been shown to
augment the anti-inflammatory and anti-proliferative effects
of ICS [9] and synergistically suppress the expression of poten-
tially immuopathogenic chemokines by rhinovirus (RV)-
infected bronchial epithelial cells (BECs) [10].

3. The need for treatment alternatives

Short-acting β2-aderenergic receptor agonists (SABA) are
typically administered by a dedicated inhaler and used to
relieve the acute symptoms caused by bronchospasm.
Increased use of reliever SABA is recommended as the
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first-line approach for worsening asthma symptoms with
maintenance of usual ICS or ICS/LABA preventer medication.
If increased use of reliever fails to reverse symptoms then
increased use of preventer therapy is advised. Thus, current
management of asthma exacerbations essentially involves
increased treatment with the drugs that failed to prevent
the exacerbation occurring in the first place [11]. Current
preventive and therapeutic strategies such as ICS in combi-
nation with LABA are of limited efficacy particularly for
children with viral wheeze [12]. In another study of children
with acute asthma and symptoms of respiratory virus infec-
tion, it was observed that they responded less effectively to
β-agonists than during stable disease [13]. So why do cur-
rent treatment approaches fail to prevent virus-induced
asthma? This may be explained in part by interference
with anti-viral immunity. Corticosteroid–LABA combination
has been reported to inhibit production of pro-inflammatory
immune mediators by RV-infected in vitro-cultured undiffer-
entiated BECs [10,14]. CXCL10 was one of the chemokines
inhibited by ICS/LABA treatment. This interferon-stimulated
gene (ISG) is involved in recruitment and activation of NK-
and Th1 cells which are involved in the type-1 IFN-mediated
anti-viral response to RV [15]. The concept that ICS/LABA can
indiscriminately interfere with anti-viral immunity is further
supported by studies in human epithelial cells and periph-
eral blood mono-nuclear cells (PBMCs) [16,17].

Another rationale for advancing therapy options for viral
asthma is to reduce the amount of steroid and β2-agonist required
to regain control of disease. Corticosteroids target many genes
and exert a multitude of undesirable effects on the body. Long-
term use from early childhood has significant side effects and has
been linked to reduced bone density, mood swings, weight gain,
difficulty sleeping, increased risk of cataracts, and increased risk of
infection throughout life [18–20]. Whilst specific target options are
currently being developed (discussed later), this has also spurred
research into new classes of glucocorticoids called dissociated
corticosteroids thatmaintain therapeutic efficacy whilst exhibiting
an improved side effect profile [21].

4. Additional therapies for virus-induced asthma

4.1. Leukotriene antagonists

Virus-induced asthma occurs despite optimal use of corticoster-
oids. This has led to the development of additional therapies
that target inflammatory pathways implicated in pulmonary
inflammation and bronchoconstriction. These include the 5-
lipoxygenase pathway (FLAP) and production of leukotrienes
(LT). There are two classes of LT – cysteinyl leukotrienes
(CysLT) and LTB4. They are inflammatory lipid mediators that
are generated by the arachidonic acid (AA) pathway in activated
immune cells. AA frommembrane phospholipids is catalyzed by
phospholipase A2 before conversion to LTA4 by 5-lipoxygenase
(5-LO). Mast cells, macrophages, eosinophils, and basophils con-
vert this molecule to the CysLT LTC4 which is the precursor for
the other cysteinyl leukotrienes (LTD4 and LTE4). Although the
potency of each can vary in different settings, all three CysLTs
can stimulate airway smooth muscle contraction and increase
vascular permeability [22].

Neutrophils convert LTA4 into LTB4 which can act as a potent
neutrophil and monocyte chemoattractant [23]. Increased CysLT
production is associated with acute asthma likely reflecting
activation of these inflammatory cells that are present in the
airways during viral asthma exacerbations [24,25]. There are two
classes (CysLT1R and CysLT2R) of classical G protein-coupled
receptors for CysLT. Human CysLT1R is the predominant CysLT
receptor in the airways and is expressed by airway smooth
muscle cells, macrophages, and mast cells [26]. LTD4 is the
predominant ligand for this receptor and increases intracellular
calcium and smooth muscle contraction. Monteleukast is a
CysLT1R antagonist that has been shown to improve lung func-
tion in patients presenting to the emergency department with
an exacerbation providing further evidence of the immuno-
pathological role of CysLTs in acute asthma [27]. The enzymes
that catalyze production of CysLTs can also be targeted by drugs
such as the 5-LO inhibitor zileuton. A number of other FLAP
inhibitors are currently being developed [28].

4.2. Anticholinergics

The cholinergic system is involved in bronchial constriction
and mucus production via activation of muscarinic receptors
by acetylcholine (ACh) which is released by peribronchial
parasympathetic nerve fibers [29]. ACh can also be produced
by (non-neuronal) airway epithelial cells [30]. Anticholinergics
such as the long-acting muscarinic receptor antagonist (LAMA)
tiotropium bromide can reduce cholinergic activity impacting
on airway smooth muscle tone and mucus hypersecretion by
blocking neuronal acetylcholine. Tiotropium has also been
reported to reduce non-neuronal ACh augmented IL-13-
induced goblet cell metaplasia in air-liquid interface (ALI)-
differentiated airway epithelial cell cultures [31]. In human
clinical trials the bronchodilatory activity of SABA could be
augmented by the use of LAMA to improve treatment out-
comes in children and adults with acute, moderate to severe
exacerbations [32,33]. For severe, persistent, poorly controlled
asthma, the addition of tiotropium to high-dose combination
therapy improved lung function over 24 hours [34]. Inhaler
tiotropium bromide has demonstrated efficacy for treatment
of chronic obstructive pulmonary disease (COPD) exacerba-
tions [35]. In Phase III human clinical trials in asthma, it pro-
vided sustained bronchodilation whilst reducing the
frequency of exacerbations [36]. Inhaled tiotropium bromide
is now licensed for use as an add-on therapy for adults on
maintenance combination therapy who have had at least one
severe exacerbation in the previous year [37]. A number of
other anticholinergic drugs including glycopyrronium (Seebri),
aclidinium bromide (Forest Laboratories and Almirall), and
umeclidinium bromide (GlaxoSmithKline and Theravance) are
also approved for the treatment of COPD and are at various
stages of development for the prevention asthma exacerba-
tions [38].

4.3. Theophylline

This xanthine derivative is a non-selective phosphodiesterase
inhibitor that has demonstrated therapeutic efficacy in
patients who do not respond well to corticosteroids.
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Phosphodiesterase inhibition reduces inflammation and
bronchoconstriction and can increase the effectiveness of
combination therapy [39]. Theophylline may therefore be
useful for the treatment of virus-induced asthma. One of its
mechanism of action includes up-regulation of histone deace-
tylase 2 expression, the deficiency of which is thought to
underlie steroid resistance in some patients [40]. The use of
this drug is limited by its interaction with numerous drugs,
narrow therapeutic range, variable pharmacokinetics, and
extensive side effects [41].

5. From drugs to biologics and personalized
treatment

5.1. Targeting allergy and type-2 immunity

The recognition that asthma is a heterogeneous disease has
implications for individualized disease management based on
detailed phenotypic characterization derived from immuno-
pathogenic mechanistic insight [1]. There is good evidence
that persistent atopic sensitization associated with activated
type-2 immunity is a key driver of asthma in children [42,43].
Asthmatic adults represent a far more heterogeneous popula-
tion. Even so, a Th2-high immune signature has been reported
in approximately 50% of adult asthmatics [44]. Type-2 cyto-
kines produced by Th2 cells are critical to many responses that
drive allergic airways inflammation and disease in asthma. IL-4
and IL-13 are required for IgE synthesis and IL-5 is required for
eosinophil recruitment, maturation, and survival. IL-9 is
required for mast cell activation. IL-13 induces airway hyper-
reactivity (AHR), mucus hypersecretion, and metaplasia of
mucus-producing cells.

Innate immune cells, particularly the recently discovered
type-2 innate lymphoid cells (ILC2), are now recognized as
another important source of type-2 cytokines associated with
the pathogenesis of allergic airway disease [45]. ILC2 recruited
to the lung during allergen challenge, respond to IL-25 and IL-
33 and produce high levels of IL-5 and IL-13 [46,47].

5.2. Synergy with virus

Two seminal studies assessed whether allergen exposure
increased the risk of acute asthma in conjunction with viral
infection in sensitized asthmatics. Green et al. investigated 60
patients aged 17–50 admitted with acute exacerbations who
were assessed for the presence of respiratory infection as well
as total and allergen-specific IgE. The combination of sensiti-
zation, exposure to high levels of common household, and
environmental allergens and viral infection was strongly asso-
ciated with the risk of hospital admittance with acute asthma
[48]. Similar findings in children (aged 3–17 years) were also
reported by Murray and co-workers indicating a synergism
between sensitization, allergen exposure, and viral infections
in inducing asthma exacerbations [49].

Studies in a human experimental RV infection model in
allergic asthmatic- and normal-volunteers demonstrated that
asthmatics had more severe lower respiratory tract symptoms,
reductions in lung function and increases in bronchial hyper-
reactivity. Exacerbation severity was strongly correlated with

BAL Th2 cell cytokine production and viral load [24]. Using
direct sampling techniques we could demonstrate increased
IL-4, IL-5, and IL-13 in the airway mucosa of asthmatics experi-
mentally infected with RV. Expression of type-2 cytokines in
both the upper and lower respiratory tract was associated
more severe asthma symptoms [50].

Various promising antibody-based therapies for treatment
of virus-induced asthma exacerbations are currently in devel-
opment and some of which are now licensed for use. This next
generation of asthma treatments include monoclonal antibo-
dies that can target specific inflammatory molecules that
define asthma phenotypes.

6. Blocking allergic inflammation with anti-IgE

Allergic asthma is the most common form of the disease. IgE
plays a central role in allergic inflammation. Activation of
FcεR1 on mast cells and basophils by cross-linking of IgE
promotes degranulation and release of pro-inflammatory
mediator leading to increased inflammation. Omalizumab
(Xolair), first approved by the USA in 2003, is a monoclonal
antibody that binds and neutralizes IgE thus preventing acti-
vation of FcεR1. Omalizumab reduces serum-free IgE levels by
binding to the constant region (cε3) which prevents IgE from
interacting with its receptor FcεR1. In addition to this, an early
study in a group of 15 subjects who were allergic to dust mite
showed that treatment with Omalizumab not only reduces
serum-free IgE but also decreases FcεR1 expression on circu-
lating basophils from these subjects [51]. Omalizumab has
been shown to effectively reduce asthma exacerbations,
improve symptom control, and reduce the need for ICS and
beta-agonists in Phase II and Phase III trials of severe atopic
asthmatics [52]. Recent expert panel guidelines recommend
considering Omalizumab as an alternative or in addition to
oral corticosteroids in Step V and VI patients with severe
allergic asthma. Two studies have examined prophylactic
treatment and reported significant reductions for exacerba-
tions (some of which were caused by a viral infection) in the
Omalizumab-treated group [53,54]. One of the studies identi-
fied an association between increased IFN-α production and
fewer exacerbations in the omalizumab treatment group and
implicated inhibition of IgεRI cross-linking by IgE as involved
in this response [54]. The mechanism linking IgE-receptor
binding and regulation of IFN production during viral infection
in asthma has been investigated. FcεR1 is on plasmacytoid
dendritic cells (pDC), a crucial innate immune cell that pro-
duces large amounts of type I IFN in response to viral infec-
tion. It was observed that activation of FcεR1 could inhibit the
ability of pDC to secrete IFN-α in response to TRL9 stimulation
[55]. Gill and colleagues extended these observations and
demonstrated deficient influenza-induced IFN induction by
pDCs from asthmatic subjects compared to healthy subjects
and confirmed that cross-linking of FсɛR1 led to profound
inhibition of virus induction of IFN-α [56]. Further studies
showed that FсɛR1 cross-linked PBMCs from children with
asthma had deficient RV-induced IFN production [57]. This
suggests that omalizumab could also be used to enhance
pDC mediated antiviral responses in the treatment of virus-
induced asthma exacerbations.
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7. Targeting type-2 cytokines

7.1. IL-4 and IL-13

It is well established that type-2 cytokines are the effector
molecules that drive allergic inflammation in asthma and biolo-
gics that target these cytokines have been the focus of treat-
ment development. IL-4 and IL-13 are type-2 cytokines that are
produced by activated mast cells, basophils, eosinophils, den-
dritic cells, and Th2 cells. These cytokines signal through IL-4Ra/
IL-13Ra1 and play a central role in promoting allergic diseases by
increasing IgE production, Th2 cell differentiation, mast cell and
dendritic cell development, eosinophil recruitment, and AHR.

Animal studies have shown that IL-4 knockout mice were
unable to develop eosinophilia making it an attractive target
for atopic asthma treatment [58]. Despite the promising
results in pre-clinical studies, clinical trials of humanized anti-
IL-4 mAb, pascolizumab, showed little efficacy in treating
asthma in human clinical trials [59,60]. It appears that anti-IL-
4 was only effective at suppressing eosinophil infiltration
when administered during allergen challenge while the inhibi-
tion of IL-4 before this had a minimal effect in reducing
eosinophil infiltration [61]. There is no evidence that blocking
IL-4 reduced disease in virus-induced asthma.

A number of humanized anti-IL-13 mAbs have also entered
clinical trials. In particular, AstraZeneca’s tralokinumab has
entered Phase III clinical trials. In a study that included 194
adults with moderate to severe uncontrolled asthma, subcu-
taneous injection of tralokinumab improved lung function
with mean ± SD increases from baseline in FEV1 of
0.16 ± 0.35 L, 0.21 ± 0.37 L, 0.26 ± 0.41 L in the 150, 300,
and 600 mg dose, respectively [62]. Compared with placebo,
there was also a greater reduction in the use of β2-agonist in
patients who were treated with tralokinumab. Similarly, lebri-
kizumab, another humanized anti-IL-13 mAb by Genentech,
also showed lung function improvement when used in
patients with high levels of the IL-13-induced molecule peri-
ostin. In addition, lebrikizumab treatment also reduced asthma
exacerbation rate by 60% in periostin-high patients [63].

As both IL-4 and IL-13 signal through IL-4Ra and given the key
roles played by IL-4 and IL-13 in the pathogenesis of asthma, a
mAb targeting IL-4Ra has been developed. The efficacy of dupi-
lumab was evaluated in asthmatic patients with persistent, mod-
erate to severe eosinophilic disease [64]. In this study, 52 patients
were treated with dupilumab 300mgwhile the other 52 patients
received placebo. Treatments were administered for 12 weeks
and patients were instructed to discontinue LABAs and ICS at
Week 4 and Week 6 through 9, respectively. The end points
measured included asthma exacerbation, lung function, and
type-2-associated markers. The results from this trial were pro-
mising with the dupilumab-treated patients experiencing an
87% reduction of exacerbations. In addition, dupilumab also
improved lung function, asthma control, and reduced expression
of biomarkers associated with type-2 inflammation.

In addition to promoting allergic inflammation, type-2 cyto-
kines can interfere with anti-viral immunity. In one study, IL-4
and IL-13 were found to inhibit RV-16-induced interferon pro-
duction and increased virus replication [65]. Increased RV
replication was also observed in mice with type-2-driven

allergic airway inflammation [66]. As RV is one the most com-
mon triggers of asthma exacerbations, it needs to be deter-
mined if blocking IL-4 and IL-13 could be useful in preventing
experimental RV-induced exacerbation of asthma [24,50].

7.2. IL-5

IL-5 regulates eosinophil maturation and survival and increased
sputum eosinophils correlates with asthma exacerbation sever-
ity [67]. Anti-IL-5 mAbs such as mepolizumab (GSK), reslizumab
(Teva Pharmaceutical), and anti-IL-5 receptor alpha benralizu-
mab (AstraZeneca) have all entered Phase III clinical trials that
treated asthmatics with high eosinophil levels. In a randomized,
double-blinded study, patients with eosinophilic asthma and
recurrent exacerbations were administered with either 75 mg
intravenous dose or 100 mg subcutaneous dose of mepolizu-
mab, or placebo every 4 weeks for 32 weeks. Treatment with
mepolizumab decreased blood eosinophil count, halved the
exacerbation rates, increased lung function, and improved
asthma control [68,69]. Mepolizumab has completed Phase III
clinical trials and has been licensed in the USA (trade name
Nucala) since November 2015 as add-on maintenance therapy
for severe, eosinophilic asthma. Similarly, blocking anti-IL-5
receptor with benralizumab with 20 mg or 100 mg reduced
exacerbation rates in adults with uncontrolled eosinophilic
asthma [70]. Eosinophils are a prominent inflammatory cell in
virus-induced asthma exacerbation. In one study, eosinophilic
airway infiltration persisted for up to 8 weeks following infection
in asthmatic individuals and correlated with increasing airway
hyper-responsiveness [71]. A more recent human experimental
RV infection study reported a very substantial increase in BAL
eosinophil numbers in asthmatic subjects [50]. Targeting IL-5 to
treat virus-induced eosinophilic asthma exacerbations is cur-
rently being investigated (e.g. Mepolizumab treatment for rhi-
novirus-induced asthma exacerbations (clinical trials.gov)).

8. Targeting epithelial responses

Airway epithelial cells possess the capacity to directly influ-
ence type-2 immunity by expression of type-2-promoting
cytokines such as TSLP, IL-25, and IL-33. We have shown that
expression of these cytokines is linked to viral replication in
bronchial epithelium, type-2 responses, and inflammation in
asthma exacerbations [50,66,72]. From a translational-treat-
ment development perspective, the airway epithelium is an
attractive site for drug delivery with inhaled therapies having
numerous advantages over systemic delivery approaches. If it
can be demonstrated that pulmonary type-2 inflammation can
be broadly suppressed by inhaling a drug or mAb that targets
a type-2 immune-activating cytokine expressed by bronchial
epithelium, then this will be a major advance on current type-
2 cytokine-targeting approaches that rely on systemic delivery
of large doses of expensive antibodies [64,73].

8.1. IL-25

IL-25 is an IL-17 family member and has been identified as an
initiator and regulator of type-2 immunity [74]. Studies have
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demonstrated increased IL-25 gene expression together with
its receptor, IL-17RB, in tissue with type-2-dominated inflam-
mation, while eosinophils, mast cells, and the airway epithe-
lium have been also been reported as sources within the lung.
Blocking IL-25 in a mouse model prior to antigen sensitization
and/or challenge caused a striking reduction in Th2 cell
responses and type-2 cytokine (IL-5 and IL-13) production
[74]. IL-25 is a potent activator to type-2 immunity. It can
stimulate type-2 cytokine production via activation of IL-
17RB-expressing Th2 cells [75] and ILC2 [76]. We have reported
that asthmatic BECs express increased levels of IL-25 when RV
infected. We further showed that blocking IL-25 receptor with
anti-IL-17RB mAb in a mouse model of RV-induced asthma
exacerbations prevented virus-induced increased allergic
inflammation and type-2 cytokine production [66].

8.2. IL-33

IL-33 signals through an IL-1R-like (IL-1RL1) subunit, also
known as ST2 or type 1 ST2 (T1/ST2), and associates with the
IL-1R accessory protein (IL-1RAcP). Infection with influenza
induces an innate T1/ST2+ population of ILC2, which
responded to IL-33 by producing IL-13 [77]. We have recently
performed experimental RV infections in atopic asthmatic and
healthy human subjects and observed that expression of IL-33
protein in the bronchial mucosal lining fluid was associated
with increased type-2 cytokine production and asthma exacer-
bation symptom severity. In vitro blocking IL-33 activity with
an anti-ST2 mAb suppressed production of type-2 cytokines
by T cells and ILC2 stimulated by medium from RV-infected
asthmatic BECs [50].

8.3. TSLP

TSLP was the first epithelial type-2-promoting cytokine
observed to be over expressed in asthma [78]. In mice, trans-
genic overexpression of TSLP in the airways induces type-2
inflammation [79] leading to skewing of naive T cells to
become Th2 cells [75]. TLSP activates dendritic cells via a
heterodimeric receptor composed of the TSLPR and the IL-
7Rα. This leads to priming and recruitment of Th2 cells via
production of CCR4-binding chemokines CCL17 and CCL22
[78]. We observed that RV infection increased TSLP expression
in the lungs of mice with allergic pulmonary inflammation
[72]. An anti-TSLP mAb has demonstrated therapeutic efficacy
in a human study of experimental allergen-driven asthma [80].
Blocking studies demonstrating a role for TLSP in amplification
of pulmonary type-2 inflammation and airways disease during
viral infection in asthma are so far lacking.

9. Viruses: targeting the trigger of asthma
exacerbations

Early-life viral wheezing illness is a risk factor for asthma
development. Jackson et al. examined the relationship
between early-life virus-induced wheeze and asthma develop-
ment in an at-risk (parents have a history of respiratory
allergy/asthma) cohort of children (COAST study [81]). They
showed that RV infections conferred the greatest probability

(odd ratio = 9.8) for asthma development by age 6 [82].
Respiratory viral infections are also the cause of most asthma
exacerbations. The precise mechanisms by which viral infec-
tions make asthma worse are still poorly understood. One
reason for this is the difficulty inherent in repeatedly sampling
the lower airways and accurately measuring the presence of
infectious virus during an exacerbation. Nonetheless, inhibit-
ing viral replication and reducing virus-induced inflammation
is a sensible approach and treatments that stimulate anti-viral
immunity are a potential therapy. Unlike the immune-blocking
approaches described earlier, the aim here is to precisely
stimulate innate anti-viral immunity thereby limiting replica-
tion and inhibiting production of asthmogenic immune med-
iators. The idea is that Toll-like receptors detect infection and
induce expression of innate anti-viral interferons which play a
key role in reducing viral load via induction of anti-viral mole-
cules directly and initiation of a type-I immune response that
antagonizes type-2 immunity and associated pulmonary aller-
gic inflammation. The major caveat to an immune-stimulatory
approach is the potential to promote inflammation and cause
worse disease. Clearly, the anti-viral/immune-regulatory versus
inflammatory profile of any drug in this category will need to
be meticulously assessed pre-clinically before moving into
human asthma trials.

10. Toll-like receptor agonists

Toll-like receptors (TLRs) recognize a range of bacterial and
viral components and are critical for the detection of patho-
gens and activation of innate immune cells. Although being
important in the clearance of pathogens, activation of TLRs
could act as a double-edged sword especially in the setting of
chronic lung diseases. For example, activation of TLR3 by viral
double-stranded RNA, and TLR4 by bacterial component LPS
are linked to increased airways inflammation in a mouse
model [83]. Conversely, activation of TLR7 or TLR9 may be
protective in asthma.

10.1. TLR7

TLR7 plays an important role in antiviral immunity. TLR7 is
predominantly expressed on pDCs and B-cells [84] and is also
expressed on airway epithelial cells [85]. Reduced TLR7 func-
tion has been associated with asthma [86,87]. In a pre-clinical
study, treatment with a TLR7 agonist in a mouse model of
allergic asthma prevented development of airway resistance,
leukocyte infiltration, and suppressed production of type 2
cytokines [88]. We have shown that Allergic Tlr7(-/-) mice
displayed impaired IFN release upon RV1B infection, with
increased virus replication and eosinophilic inflammation and
airways hyper reactivity. Treatment with exogenous IFN or
adoptive transfer of TLR7-competent pDCs blocked these
exaggerated inflammatory responses. TLR7 expression in the
lungs was suppressed by allergic inflammation and by IL-5-
induced eosinophilia in the absence of allergy. We then exam-
ined endobronchial biopsies from subjects with moderate-to-
severe asthma and eosinophilic but not neutrophilic airways
inflammation, despite inhaled steroids, showed reduced TLR7
and IFN lambda 2/3 expression. Furthermore, TLR7 expression
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inversely correlated with percentage of sputum eosinophils
[89]. This implies IL-5-induced airways eosinophilia acts as a
negative regulator of TLR7 expression and antiviral responses,
and provides a molecular mechanism underpinning the effect
of eosinophil-targeting treatments for the prevention of
asthma exacerbations. Further, in a chronic allergic asthma
model, pre-treatment with a TLR7 agonist before ovalbumin
antigen challenge also prevented airway remodeling, goblet
cell hyperplasia and increases in airway smooth muscle mass
[90]. Similar to the acute allergic asthma model, TLR7 agonist
pre-treatment also reduced both type 1 and type 2 cytokines
in the chronic model. Apart from its roles in innate immunity,
TLR7 can also mediate human airway smooth muscle relaxa-
tion in a dose-dependent manner [91]. Given that TLR7 pro-
motes antiviral defense and protects against virus-induced
airway dysfunction, TLR7 agonists are a viable therapeutic
option for virus-induced asthma exacerbations. This is sup-
ported by mouse studies showing TLR7 deficiency leads to a
more severe RV-induced airways disease in house dust-mite
allergic mice. This effect could be reversed with type I or type
III IFN treatment [89]. GSK have developed a selective TLR7
agonist (GSK-2245035) which has been tested in a Phase 2 trial
involving patients with allergic rhinitis. Intranasal delivery of
<100 ng stimulated type I IFN and ISG expression without
causing symptomatic inflammation [92].

10.2. TLR9

TLR9 recognizes both bacterial and viral CpG-DNA. TLR9 is
predominantly expressed in airway epithelium, macrophages,
neutrophils, pDCs, and B-cells [93–95]. In a murine model of
asthma, it was found that TLR9 agonist treatment during
allergen challenge markedly reduced lung eosinophilia, type-
2 cytokines production, and airway hyperreactivity [96].
Further studies showed that CpG-DNA also suppressed sub-
epithelial fibrosis and goblet cells hyperplasia, which are key
features of airway remodeling [97]. It remains to be studied if
TLR9 agonists could be useful in treating viral-induced asthma.

11. Innate anti-viral interferons and asthma

Innate anti-viral type I interferons (IFN-α and – β) play an
important role in several biological processes as they can
have an anti-proliferative, anti-viral, and immunomodulatory
activity [98]. Type I IFNs are an important component of innate
immune response against virus and can be induced upon
stimulation of pattern recognition receptors (PRRs) by bacteria
and viral components [99]. Type I IFN receptor consists of two
subunits, IFN-α receptor (IFNAR)-1 (α subunit) and IFNAR-2 (β
subunit). Upon binding with its ligand, type I IFNs signal
through JAK-1 and protein-tyrosine kinase (Tyk)-2, which
phosphorylates STAT-1 and STAT2 to form a heterodimer
before translocating into the nucleus and binding to promo-
ters of ISGs [98]. Many ISGs are involved in inhibiting viral
replication and the importance of ISGs in viral pathogenesis
is summarized in a review [100].

There is evidence to suggest that type I IFNβ expression by
RV-infected BECs is impaired in asthma, identifying a poten-
tially important protective role for type I IFN signaling in

asthma exacerbations [101,102]. In a further study to identify
mechanisms of impaired IFN expression, it was shown that
suppressor of cytokine signaling 1 (SOCS1), induced by either
RV infection or inflammatory cytokines, suppressed IFNβ pro-
moter activation in BECs. In addition, expression of SOCS1 was
increased in bronchial biopsy specimens from adults with mild
to moderate atopic asthma prompting the conclusion that
increased expression of this negative regulator contributes to
IFN deficiency in asthma [103].

Type III IFN (IFNλ1, 2, and 3) are another group of innate
anti-viral IFNs that signal through a distinct receptor complex
composed of IFN-λR1 and IL-10R2 [104]. Analysis of ex vivo RV-
infected asthmatic BECs and bronchoalveolar lavage (BAL)
cells, Contoli et al. demonstrated impaired RV-induced type
III IFN correlated with increased symptoms and viral load and
decline in lung function during RV infection in vivo in the same
patients [105]. A subsequent study employed mouse models
to demonstrate that exogenous expression of IFNλ could
reduce the severity of allergic airways disease via modulation
of CD11c+ DC-mediated differentiation of Th1 cells [106]. Type
I interferon can also restrict type 2 immunopathology by act-
ing on ILC2. Mice that were deficient in type I IFN signaling
demonstrated an increase in ILC2 and type 2 immunopathol-
ogy following infection by influenza A virus [107]. More
recently, two separate studies simultaneously reported that
IFNβ negatively regulated activated ILC2, which in turn
reduced type-2 inflammation [107,108].

The prevalence of defective IFN expression is not universal
with ‘normal’ IFN expression in asthma observed in some
studies [109,110]. There has even be a report of increased
IFNλ in children who had wheezed with a viral infection
when compared to children whose viral disease was confined
to the upper respiratory tract. Expression positively correlated
with disease severity and the authors concluded that this was
evidence that IFNλ was driving disease. Whilst this is possible,
the authors were unable to measure viral load in the lower
airways and determine if increased IFNλ was being stimulated
by higher viral replication in the wheezing children [111]. The
interaction between IFN-expression, viral replication and effect
on disease is complex and each can influence the other.
Another important factor appears to be disease severity.
Discrepancies in identifying IFN deficiency in asthma have
been attributed to asthma severity with mild, well-controlled
asthma less likely to exhibit this phenotype [112].

Although there is still much to learn about the role of IFNs
in viral asthma exacerbations, these molecules are an obvious
therapeutic option with the potential to restore deficient IFN
expression, improve control of viral infection, and suppress
type-2-driven allergic airways disease. A clinical trial investi-
gated the effect of type I interferon therapy on asthmatics.
The study recruited participants with a history cold-induced
asthma exacerbations. They were treated with either nebu-
lized IFN-β or placebo within 24 hours of the onset of cold
symptoms. There was no difference observed between the
IFN-β and placebo-treated groups in terms of asthma control
questionnaire; however, IFN treatment did enhance morning
peak respiratory flow recovery, reduce the need for additional
treatment and boosted innate immunity as assessed by blood
and sputum biomarkers. It should be noted that intention to
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treat analysis of this population revealed that the majority
with colds failed to develop significant exacerbations.
Further analysis of a subgroup with persistent asthma of
moderate or greater severity showed a deterioration in symp-
toms and peak flow with a cold and treatment with IFN-β
significantly improved peak flows and prevented virus-
induced asthma symptoms [113]. These results suggest that
interferon therapy might be useful in treating a subset of
asthmatics with persistent, poor control who, despite treat-
ment, are at greater risk of acute exacerbations. A large Phase
III randomized controlled trial is now underway to determine
this.

12. Anti-viral approaches for rhinovirus

Almost all acute asthma episodes in children are preceded
by a virus-induced cold [114]. In adults, the data is less
comprehensive but viruses are still the predominant cause
of asthma attacks for this group too [115,116]. Respiratory
viruses are an obvious target for advancing treatment of
asthma exacerbations. Directly inhibiting viral infection
would obviate the need for blocking downstream inflamma-
tory cytokines or boosting anti-viral immunity. This approach
comes with its own set of challenges. Not least of which is
the number of viruses that can cause an exacerbation. They
include RVs, influenza, RSV, human metapneumovirus, para-
influenza virus, adenovirus, and coronavirus. Whilst all of
these viruses have been detected, they are not equal in
terms of the frequency with which they are associated
with acute asthma. Most viral asthma (particularly in chil-
dren) is caused by RV infection. Blocking infection with this
group of viruses would have a substantial impact on virus-
induced asthma exacerbations. There are currently no anti-
viral drugs available for RV.

12.1. Anti-human ICAM-1 monoclonal antibody

Intercellular adhesion molecule-1 (ICAM-1) is expressed on
epithelial cells, endothelial cells, leukocytes, and neutrophils.
Expression of ICAM-1 is crucial for the recruitment and activa-
tion of cells expressing its natural ligands. These include
macrophage adhesion ligand 1 expressed by macrophages
and granulocytes, leukocyte function-associated antigen 1
(LFA-1) expressed by T-cells, and extracellular matrix protein.
ICAM-1 is also the natural receptor for 90% of species A/B RV
and classifies them as major group viruses [117]. Therefore,
targeting ICAM-1 could be an alternative in treating viral-
induced asthma. Note that infection with 10% of RV-A sub-
types and all RV-C species viruses would not be inhibited by
anti-ICAM-1. In our previous work we showed that administra-
tion of anti-human ICAM-1 antibody, targeting domain 1 of
human ICAM-1, was able to block the entry of HRV16 and
HRV14 reducing cellular inflammation, pro-inflammatory cyto-
kine production and viral replication in a transgenic mouse
expressing a chimeric human-mouse ICAM-1 protein that con-
fers permissiveness to RV-16. Further, administration of anti-
human ICAM-1 successfully prevented HRV16-induced exacer-
bation of allergic airway inflammation and airway hyper-
responsiveness in these mice [118]. It remains to be

determined if such an approach can be translated into
human clinical trials.

12.2. Anti-rhinovirus compounds

Initial interest in treatments for RV infection stemmed from a
need to reduce the burden of the common cold [119]. A
number of drugs including R61837, WIN54954, and pirodavir
were designed to bind to the viral capsid and inhibit attach-
ment, un-coating and productive infection. Results from clin-
ical trials were generally disappointing and development was
discontinued [120]. Another anti-rhinoviral compound, pleco-
naril, is a capsid binder that prevents virion uncoating and this
made it to Phase II clinical trials. Subjects were administered
pleconaril within 24 hours of a viral cold. Results from this
study were promising with a significant reduction in symptom
scores. However, the drug was not approved due complica-
tions arising from interactions with the oral contraceptive.
Another drawback was the emergence of drug-resistant
mutants [121]. A company (Merck Sharp & Dohme Corp)-
funded Phase II study was conducted in 2007 to assess the
effect of pleconaril nasal spray on colds and asthma exacer-
bations. No reduction in RV-positive asthma exacerbations was
reported. There is renewed interest in development of capsid-
binding anti-rhinovirals specifically for the treatment of
patients with chronic respiratory diseases such as asthma.
Biota Pharmaceuticals is currently testing the small molecule
enterovirus capsid inhibitor vapendavir in Phase II clinical trials
involving approximately 400 asthmatics. The trial is due to be
completed in March of this year and frequency of asthma
exacerbations will be one of the endpoints assessed.

Rupintrivir (AG7088, Agouron Pharmaceuticals, Inc) is a 3C
protease inhibitor that was designed to inhibit 3C-mediated
proteolytic cleavage of the viral polyprotein thereby prevent-
ing RV replication. Frequent delivery of this drug by nasal
spray as a cold treatment did reduce symptoms and nasal
viral secretion [122]. There has been interest in rupintrivir as
a treatment for enterovirus (coxsackievirus), the causative
agent of hand, foot and mouth disease which is a common
affliction amongst infants and young children [123]. The effi-
cacy of rupintrivir in the treatment of viral asthma has not
been reported.

Resveratrol is a natural phenol (stilbenoid) produced by a
number of plants in response to damage or infection. This
compound has been reported to inhibit RV replication in nasal
epithelia [124] and potentiate glucocorticosteroid activity
[125]. So far, studies with this molecule have been limited to
in vitro and animal models.

13. Rhinovirus vaccine

A vaccine that provides life-long immunological protection is
the ‘holy grail’ of preventative treatment for virus-induced
asthma exacerbations. Given the predominance of RV in this
disease an effective vaccine for this virus would have an
enormous impact. We have successful vaccines for many
important viral diseases – so why not RV? One principal barrier
to vaccine development is viral diversity. RVs are a group
within the Enterovirus genus that encompass 3 species (RV-A,
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B and C) that cover 150+ genetically distinct subtypes based
on capsid protein sequence [126]. RV capsids consist of 4
structural proteins (VP1-4) with VP1 being the largest and
primary target for neutralizing antibodies [127]. RV capsid
proteins exhibit substantial antigenic diversity and as a result
antibody responses to RV are similarly diverse. In fact, species
A and B can be divided into 100 immunologically distinct
serotypes. Serological responses to the 51 RV-C viruses have
not been characterized but a similar level of antigenic diversity
is likely to exist for these viruses [128]. The existence of 100+
RV serotypes explains why humans remain susceptible to
infection throughout life. Despite antigenic diversity naturally
occurring, antibody cross reactivity has been detected in
human serum. These antibody responses varied amongst indi-
viduals (presumably because the RV infection history of each
subject is different) and protection against infection was not
assessed [129]. Immunization with peptides derived from RV
capsid proteins has also generated cross-reactive antibodies.
However, cross-reactivity was limited such that no more than
50% of RV subtypes were neutralized [130]. Thus it is becom-
ing increasingly clear that any completely protective vaccine
against RV will need to incorporate neutralizing antibody
epitopes from multiple RV subtypes across three viral species
which is a major challenge for vaccine design.

Recently, an alternative to generating mucosal neutralizing
antibodies has been considered for RV vaccine design: based
on generation of protective T cells. The main attraction of
exploring this approach is that RV precursor and non-struc-
tural protein sequences are more highly conserved [131] and
are therefore more likely to generate broadly protective
immunity reducing the complexity of vaccine formulation
required for broad spectrum protection. We investigated this
using an RV infection model [132] in which mice had been
immunized with RV-A VP0 (VP4+VP2 precursor). We observed
induction of cross-species (RV-A and RV-B) T cell responses.
Enhanced production of species B virus-specific neutralizing
antibodies following infection of VP0 immunized mice with
RV-B virus was also observed [133]. Challenges for a T-cell-
based RV vaccine development include the time required to
mobilize an effective T cell response against RV and the
potential for such a response to enhance lung inflammation
and exacerbate asthma symptoms.

14. Expert commentary

Respiratory virus infections are usually confined to the upper
respiratory tract where they cause a mild, self-limiting condi-
tion commonly referred to as a ‘cold’. In susceptible indivi-
duals with chronic lower respiratory disease such as asthma
infection can exacerbate symptoms requiring increased med-
ication or professional medical intervention. It is now clear
that the vast majority of asthma exacerbations are triggered
by a viral infection the most common being human RV. This is
particularly the case in children, where acute wheezing ill-
nesses remain amongst the most common causes of hospita-
lization. In those aged six and under the combination of atopy
and recurring episodes of wheeze with virus infections, in
particular RV, are strongly associated with the development
of asthma in later life. Bronchoconstriction and airway

inflammation underpin disease in acute viral asthma and cur-
rent preventive and therapeutic strategies consist of drugs
that relax airway smooth muscle to reverse airway constriction
and broad spectrum anti-inflammatory corticosteroids that
reduce the impact of pathological immune mediators. For
many asthmatics this combined approach controls their symp-
toms and reduces the impact of viral infections. However,
there is a sub-population of asthmatics who tend to have
more severe disease that is difficult to control with standard
treatment. This group is susceptible to viral exacerbations and
constitute the biggest burden in terms of morbidity, mortality,
and health care costs associated with asthma. To address this
need for new treatment options (summarized in Figure 1)
much research has focused on the development of monoclo-
nal antibodies (mAbs) that inhibit key immune mediators in
asthma. This has been combined with research to define
asthma immune phenotypes which has proven critical to the
therapeutic efficacy of these new biologics. Anti-IgE (omalizu-
mab, Xolair) is the most advanced and is now recommended
for use as add-on therapy for persistent, moderate to severe
atopic asthma. Xolair has been shown to reduce the incidence
of asthma exacerbations; however, its specific effectiveness for
viral asthma exacerbations is not known. MAbs against type-2
cytokines such as mepolizumab have completed Phase III
clinical trials and have begun to be licensed for use. The
airway epithelium is the site of respiratory virus infection and
asthmatic airway epithelial cells can respond aberrantly to
infection and produce inflammatory mediators that are poten-
tially instrumental in the initiation of an asthma attack.
Strategies being developed to address this include mAbs tar-
geting type-2 promoting cytokines such as TSLP, IL-25, and IL-
33 and adjuvanting innate epithelial anti-viral immunity with
IFNβ, IFNλ, or TLR agonists. It is now recognized that RV
infection is by far the most frequent cause of viral asthma,
particularly in children. Directly targeting RVs with anti-virals
or generating protective immunity with an anti-RV vaccine are
other approaches being considered. Structural/antigenic diver-
sity amongst approximately 150+ RV sub-types presents a
substantial challenge for anti-viral drug- and vaccine-
development.

15. Five-year view

Much has been achieved with current asthma therapies, in
particular the use of moderate dose ICS or ICS/LABA combina-
tions which are enough to improve asthma control and reduce
the risk of exacerbations. The problem of acute exacerbations
of asthma and in particular the role of virus infection in
triggering these events remains an important unmet need. In
the next five years, emergent monoclonal antibody therapies
that target type-2 airway inflammation; such as those directed
against IL-5 and potentially IL-4/IL-13 will continue to become
available for clinical use, with the expected benefit of substan-
tial reductions in exacerbation frequency in those patients not
controlled with ICS/LABA alone. A greater understanding of
the role of other emergent cytokines, in particular IL-25, IL-33,
and TSLP in acute asthma and the existence of monoclonal
antibodies against them is also likely to see them deployed in
the setting of preventing asthma exacerbations and possibly
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treating them. In regard to specific treatments that target
acute viral infection in asthma, the effectiveness of nebulized
IFN-β as either an antiviral agent or immune modifier should
be known. The application of other direct antiviral agents or
vaccination strategies appears unlikely within this timeframe
with perhaps the exception of vapendavir which is currently in
Phase II clinical testing. What is unclear is whether any of these
strategies will impact on the group during the first years of life
who experience the most frequent episodes of virus-induced
airways disease and in whom this may play a crucial role in the
development of adult asthma. If clinical benefit can be
demonstrated in young children, which in itself is a challenge
due to difficulties in recruiting this age group for regular
injections, Omalizumab may hold the most promise of mod-
ifying the development of asthma. This is because there exists
such a strong association between atopy and virus-induced
wheeze in the development of persistent asthma in later years.

16. Key issues

● Standard treatment (β adrenergic receptor agonists and
inhaled corticosteroids) has evolved little in recent decades
and exacerbations continue to cause a disproportionately
large burden of disease.

● Asthma is now recognised as a heterogeneous disease
encompassing a range of phenotypes driven by distinct
immunopathological mechanisms; this is driving develop-
ment of novel biologics and personalised treatment.

● Directly targeting viruses to prevent or treat exacerbations is
technically very challenging due to viral structural/antigenic
diversity; interferon therapy is broad spectrum and has poten-
tial to overcome the problems of structural/antigenic diversity.

● Airway epithelium is the site of viral infection and initiates the
inflammatory cascade during an exacerbation. Targeting
type-2 promoting cytokines at the airway epithelium offers
real hope for the development of new treatments.

● Emerging therapies such as type-2 cytokine targeting-
mAbs, anti-IgE and type I/III IFN show real promise for
improving treatment of exacerbations of established
asthma however their therapeutic efficacy in viral wheeze
in pre-asthmatic young children is completely unknown.
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